Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles

First we remember that sinθ can be expressed in terms of powers of z, where z=cos(θ)+isin(θ), using the following:2isin(nθ)=zⁿ-z⁻ⁿ and 2cos(nθ)=zⁿ+z⁻ⁿ
so, [2isin(θ)]⁴=[z¹-z⁻¹]⁴ 16sin(θ)=(z)⁴(-z⁻¹)⁰+4(z)³(-z⁻¹)¹+6(z)²(-z⁻¹)²+4(z)¹(-z⁻¹)³+(z)⁰(-z⁻¹)⁴ by binomial exp.This simplifies to:16sin(θ)=(z⁴+z⁻⁴)-4(z²+z⁻²)+6but as we saw before (zⁿ+z⁻ⁿ)=2cos(nθ)so 16sin⁴(θ)=2cos(4θ)-8cos(2θ)+6so ∫sin⁴(x)=(1/16)∫2cos(4θ)-8cos(2θ)+6dx=3/8x-1/4sin(2x)+1/32sin(4x)+C.

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


Find the Taylor Series expansion of tan(x) about π/4 up to the term in terms of (x-π/4)^3.


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


Find the displacement function if the acceleration function is a=2t+5. Assume a zero initial condition of displacement and v=8 when t=1.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences