Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2

Differentiate the function to find the gradient at any point: df/dx = 2x - 1/(x+3)^2 - 4/(x^5)insert the value of 2 into f(x) and df/dx --> df/dx = 3.835, f(2) = 4.2625create the equation of the line by y-ycoord/x- x coord = gradient so y- 4.2625/x-2 = 3.825. We then rearrange this equation to produce an equation of the line in a simpler format

EF
Answered by Elliot F. Maths tutor

2978 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to ln(2y+5) = 2 + ln(4-y)


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


Why is it that the sum of all natural numbers up to n is 1/2(n)(n+1)?


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning