Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.

>First know that you must differentiate to find the gradient. To differentiate this function you must use the product rule which is:>d/dx(f(x)g(x))=f(x)g'(x)+f'(x)g(x)>Now apply this rule to the formula where f(x)=e2x and g(x)=ln4x2>y=e2x.ln4x2>y' (this is another way of writing f'(x))= e2x.8x/4x2+2e2x.ln4x2>Now sub in x=5 and simplify:e2585/4(52)+2e25*ln4(52)=0.4e10+2e10*ln100

Answered by Akshina S. Maths tutor

3497 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


What is the differential of y =sin(2x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences