Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.

>First know that you must differentiate to find the gradient. To differentiate this function you must use the product rule which is:>d/dx(f(x)g(x))=f(x)g'(x)+f'(x)g(x)>Now apply this rule to the formula where f(x)=e2x and g(x)=ln4x2>y=e2x.ln4x2>y' (this is another way of writing f'(x))= e2x.8x/4x2+2e2x.ln4x2>Now sub in x=5 and simplify:e2585/4(52)+2e25*ln4(52)=0.4e10+2e10*ln100

Answered by Akshina S. Maths tutor

3382 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate by parts ln(x)/x^3


Integrate xsin(2x) by dx between the limits 0 and pi/2.


Solve the Equation: 2ln(x)−ln (7x)=1


A circle C with centre at the point (2, –1) passes through the point A at (4, –5). Find an equation for the circle C.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences