Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.

>First know that you must differentiate to find the gradient. To differentiate this function you must use the product rule which is:>d/dx(f(x)g(x))=f(x)g'(x)+f'(x)g(x)>Now apply this rule to the formula where f(x)=e2x and g(x)=ln4x2>y=e2x.ln4x2>y' (this is another way of writing f'(x))= e2x.8x/4x2+2e2x.ln4x2>Now sub in x=5 and simplify:e2585/4(52)+2e25*ln4(52)=0.4e10+2e10*ln100

AS
Answered by Akshina S. Maths tutor

4351 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why does integration by parts work?


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


What is the cosine rule and how do I use it?


For y=x/(x+4)^0.5, solve dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning