Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.

>First know that you must differentiate to find the gradient. To differentiate this function you must use the product rule which is:>d/dx(f(x)g(x))=f(x)g'(x)+f'(x)g(x)>Now apply this rule to the formula where f(x)=e2x and g(x)=ln4x2>y=e2x.ln4x2>y' (this is another way of writing f'(x))= e2x.8x/4x2+2e2x.ln4x2>Now sub in x=5 and simplify:e2585/4(52)+2e25*ln4(52)=0.4e10+2e10*ln100

AS
Answered by Akshina S. Maths tutor

4347 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many solutions are there to the equation sin x = a, if 0<a<1 and 0<x<pi


Solve the differential equation: dy/dx = tan^3(x)sec^2(x)


Integrate y=x^2 between the limits x=3 and x=1


Find the positive value of x such that log (x) 64 = 2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning