Binomial expansion of (1+4x)^5 up to x^2

This question can be treated like a normal binomial expansion question which is commonly seen at A level. The standard binomial expansion is (1+x)n = 1 + nx + (n(n-1)(x2))/2! where 2! is 2 factorialSo in this question let u=4x, n=5(1+u)^5 = 1 + 5u + (5)(4)(u2)/(2)(1)(1+u)5= 1 + 5u + 10u2now we need to substitute in u=4xso (1+4x)5 = 1 (5)(4)x + 10(4x)2(1+4x)5=1+20x+160x2

Answered by Katherine I. Maths tutor

4435 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find dy/dx for the equation y = 6x ^(1/2)+x+3


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


Find the derivative of the function y = (2x + 12)/(1-x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences