Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx

We will solve the integral by part. We know the formula for integration by parts: ∫ f(x)'g(x)dx=f(x)g(x)-∫f(x)g(x)'dx (1). We know that: (arcsin (x))'=1/sqrt(1-x^2). So we can write arcsin(x)/sqrt(1-x^2) dx =arcsin(x)*(arcsin(x))'. So, in formula (1) f(x)=arcsin(x), g(x) =arcsin(x) and f(x)'g(x)=arcsin(x)/sqrt(1-x^2) dx. So, using (1) we obtain: ∫ arcsin(x)/sqrt(1-x^2) dx=∫ (arcsin(x))'*arcsin(x)dx=(arcsin(x))2-∫ arcsin(x)arcsin(x)'dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx. We obtained: ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx =>2 ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2=>∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2/2.

Answered by Ionut-Catalin C. Maths tutor

8048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show using mathematical induction that 8^n - 1 is divisible by 7 for n=1,2,3,...


find f'(x) of (x^2) + 3x + 2.


What is the difference between mutually exclusive and indepedent events?


find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences