Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx

We will solve the integral by part. We know the formula for integration by parts: ∫ f(x)'g(x)dx=f(x)g(x)-∫f(x)g(x)'dx (1). We know that: (arcsin (x))'=1/sqrt(1-x^2). So we can write arcsin(x)/sqrt(1-x^2) dx =arcsin(x)*(arcsin(x))'. So, in formula (1) f(x)=arcsin(x), g(x) =arcsin(x) and f(x)'g(x)=arcsin(x)/sqrt(1-x^2) dx. So, using (1) we obtain: ∫ arcsin(x)/sqrt(1-x^2) dx=∫ (arcsin(x))'*arcsin(x)dx=(arcsin(x))2-∫ arcsin(x)arcsin(x)'dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx. We obtained: ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx =>2 ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2=>∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2/2.

Answered by Ionut-Catalin C. Maths tutor

7477 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When would you apply the product rule in differentiation and how do you do this?


Integrate x^2 + 2x + 5x^-1


Consider a cone of vertical height H (in metres) and base radius R (in metres) which is full with water. The cone, at time t=0, starts to leak such that it loses water at a rate of k m^3 per second. Give an expression for the rate of change of H.


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences