Solve the following integral: ∫ arcsin(x)/sqrt(1-x^2) dx

We will solve the integral by part. We know the formula for integration by parts: ∫ f(x)'g(x)dx=f(x)g(x)-∫f(x)g(x)'dx (1). We know that: (arcsin (x))'=1/sqrt(1-x^2). So we can write arcsin(x)/sqrt(1-x^2) dx =arcsin(x)*(arcsin(x))'. So, in formula (1) f(x)=arcsin(x), g(x) =arcsin(x) and f(x)'g(x)=arcsin(x)/sqrt(1-x^2) dx. So, using (1) we obtain: ∫ arcsin(x)/sqrt(1-x^2) dx=∫ (arcsin(x))'*arcsin(x)dx=(arcsin(x))2-∫ arcsin(x)arcsin(x)'dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx. We obtained: ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2- ∫ arcsin(x)/sqrt(1-x^2) dx =>2 ∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2=>∫ arcsin(x)/sqrt(1-x^2) dx=(arcsin(x))2/2.

IC
Answered by Ionut-Catalin C. Maths tutor

9705 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


find dy/dx of the equation y=ln(x)2x^2


x^2 + y^2 + 10x + 2y - 4xy = 10. Find dy/dx in terms of x and y, fully simplifying your answer.


Integrate 3x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning