Find a solution to sec^(2)(x)+2tan(x) = 0

This question is a quadratic equation in hiding. The first step to solving this would be to expand sec^(2)(x) into 1 + tan^(2)(x) as they are equivalent. This can be derived by dividing sin^(2)(x) + cos^(2)(x) = 1 by cos^(2)(x). This will give us the equation tan^(2)(x) + 2tan(x) +1 = 0. If tan(x) is set to equal z, we end up with the equation z^(2)+2z+1 = 0, which gives us the solution z = -1 when the quadratic formula is used. If we substitute tan(x) back in, we end up with tan(x) = -1, which gives us the solution x = -45 when our calculators are used.

Answered by Mohamed B. Maths tutor

4511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


(M1) What direction does friction act in? What are the friction equations both generally and in limiting equilibrium? What does it mean for a system to be in equilibrium?


How to transform graphs of functions?


C and D are two events such that P(C) = 0.2, P(D) = 0.6 and P(C|D) = 0.3. Find P(D|C), P(C’ ∩ D’) & P(C’ ∩ D)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences