Find a solution to sec^(2)(x)+2tan(x) = 0

This question is a quadratic equation in hiding. The first step to solving this would be to expand sec^(2)(x) into 1 + tan^(2)(x) as they are equivalent. This can be derived by dividing sin^(2)(x) + cos^(2)(x) = 1 by cos^(2)(x). This will give us the equation tan^(2)(x) + 2tan(x) +1 = 0. If tan(x) is set to equal z, we end up with the equation z^(2)+2z+1 = 0, which gives us the solution z = -1 when the quadratic formula is used. If we substitute tan(x) back in, we end up with tan(x) = -1, which gives us the solution x = -45 when our calculators are used.

Answered by Mohamed B. Maths tutor

4665 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


using integration by parts evaluate the integral of xsinx between x=0 and x =pi/2


How do you find dy/dx for a set of parametric equations?


The curve C has equation 2yx^2 + 2x + 4y - cos(πy) = 45. Using implicit differentiation, find dy/dx in terms of x and y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences