Use integration to find I = ∫ xsin3x dx

Use integration by parts, let U = x, the derivative of U = 1, let the derivative of V = sin3x and intergrate the derivative of V to arrive at V = (-1/3)(cos3x). Substitute the value into the formula uv − ∫ vdu dx dx, arrive at I = (x)(-1/3)(cos3x) - ∫(1)(-1/3)(cos3x)dx which can be written us I = (-x/3)(cos3x) +∫(1/3)(cos3x)dx. ∫(1)(1/3)(cos3x)dx = (1/9)(sin3x). Now put that into the original equation giving the final answer I = (-x/3)(cos3x)+ (1/9)(sin3x) + c,

ZL
Answered by Zifeng L. Maths tutor

6068 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (x+1)/2x + (2x+3)/(x+1) as one term


Explain how integration via substitution works.


f(x) = (sin(x))^3. What is f'(x)


How do I evaluate composite functions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences