Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.

(a) Asks to differentiate an equation C: 4x2 - y3 - 4xy + 2y = 0Then use the fact that point P (-2,4), lies on C to find an expression for dy/dx Differential of form 8x - 3y2(dy/dx) - (4y + 4x(dy/dx)) + 2yln2(dy/dx) = 0Rearrange and substitute to find dy/dx(b) Asks to find the point where the Normal to C at P intersects the y axis. (form of p + qln2)-1/(dy/dx) to find gradient of normal to C at P, then use x = 0 at Y axis intercept to find y coordinate.

Answered by Alexander W. Maths tutor

2911 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Two particles A and B of mass 2kg and 3kg respectively are moving head on. A is moving at 5m/s and B is moving at 4m/s. After the collision, A rebounds at 4m/s. What is the speed of B and what direction is it moving in?


Differentiate x^x


How do I use numerical methods to find the root of the equation F(x) = 0?


How can I use the normal distribution table to find probabilities other than P(z<Z)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences