Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.

(a) Asks to differentiate an equation C: 4x2 - y3 - 4xy + 2y = 0Then use the fact that point P (-2,4), lies on C to find an expression for dy/dx Differential of form 8x - 3y2(dy/dx) - (4y + 4x(dy/dx)) + 2yln2(dy/dx) = 0Rearrange and substitute to find dy/dx(b) Asks to find the point where the Normal to C at P intersects the y axis. (form of p + qln2)-1/(dy/dx) to find gradient of normal to C at P, then use x = 0 at Y axis intercept to find y coordinate.

Answered by Alexander W. Maths tutor

2673 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


Differentiate with respect to x: (x^2+5)^3


The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences