Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.

(a) Asks to differentiate an equation C: 4x2 - y3 - 4xy + 2y = 0Then use the fact that point P (-2,4), lies on C to find an expression for dy/dx Differential of form 8x - 3y2(dy/dx) - (4y + 4x(dy/dx)) + 2yln2(dy/dx) = 0Rearrange and substitute to find dy/dx(b) Asks to find the point where the Normal to C at P intersects the y axis. (form of p + qln2)-1/(dy/dx) to find gradient of normal to C at P, then use x = 0 at Y axis intercept to find y coordinate.

AW
Answered by Alexander W. Maths tutor

3213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of the x^3 term in the binomial expansion of (2x+(1/3x^2))^9


a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


A curve has the equation: x^3 - x - y^3 - 20 = 0. Find dy/dx in terms of x and y.


Use the substitution u=1+e^x to find the Integral of e^(3x) / (1 + e^x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning