Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]

1/(1+2x) dx = 4e^(-2t) dt      Integrate both sides:   ln[2/(1+2x)] = -8e^(-2t) + c      input x = 1/2, t = 0:  ln(2/2) = -8*(1) + c        ln 1 = 0,  so c = 8ln[2/1+2x] = 8[1-e^(-2t)]

Answered by Henry F. Maths tutor

2766 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


The curve C has equation y = x^3 - 3x^2 - 9x + 14. Find the co-ordinates and nature of each of the stationery points of C.


Find the nature of the turning points of the graph given by the equation x^4 +(8/3)*x^3 -2x^2 -8x +177 (6 marks)


find the diffrential of 3sin2x+4cos2x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences