Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]

1/(1+2x) dx = 4e^(-2t) dt      Integrate both sides:   ln[2/(1+2x)] = -8e^(-2t) + c      input x = 1/2, t = 0:  ln(2/2) = -8*(1) + c        ln 1 = 0,  so c = 8ln[2/1+2x] = 8[1-e^(-2t)]

HF
Answered by Henry F. Maths tutor

3358 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = sin(2x)(4x+1)^3, find dy/dx


If y^3 = 8.08, approximate y.


Question 3 on the OCR MEI C1 June 2015 paper. Evaluate the following. (i) 200^0 (ii) (9/25)^(-1/2)


What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning