Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]

1/(1+2x) dx = 4e^(-2t) dt      Integrate both sides:   ln[2/(1+2x)] = -8e^(-2t) + c      input x = 1/2, t = 0:  ln(2/2) = -8*(1) + c        ln 1 = 0,  so c = 8ln[2/1+2x] = 8[1-e^(-2t)]

Answered by Henry F. Maths tutor

2771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

y = x*(x-2)^-1/2. Prove dy\dx = (x-4)/2*(x-2)^3/2


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


A ball is released from rest at a height of 4m. At what speed does it hit the ground?


Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences