Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]

1/(1+2x) dx = 4e^(-2t) dt      Integrate both sides:   ln[2/(1+2x)] = -8e^(-2t) + c      input x = 1/2, t = 0:  ln(2/2) = -8*(1) + c        ln 1 = 0,  so c = 8ln[2/1+2x] = 8[1-e^(-2t)]

Answered by Henry F. Maths tutor

2796 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


Express x^2 + 5x + 10 in the form (x+p)^2 +q


The equation: x^3 - 12x + 6 has two turning points. Use calculus to find the positions and natures of these turning points.


Write down two reasons for using statistical models


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences