Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

Related Further Mathematics A Level answers

All answers ▸

What are Taylor series used for?


'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


Can you show me how to solve first order differential equations using the integrating factor method?


z = 4 /(1+ i) Find, in the form a + i b where a, b belong to R, (a) z, (b) z^2. Given that z is a complex root of the quadratic equation x^2 + px + q = 0, where p and q are real integers, (c) find the value of p and the value of q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences