Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

CR
Answered by Callum R. Further Mathematics tutor

2715 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


How can the integrating factor method be derived to give a solution to a differential equation?


Compute the derivative of arcsin(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning