Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

CR
Answered by Callum R. Further Mathematics tutor

2822 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution of the differential equation d^2y/dx^2 - 2(dy/dx) = 26sin(3x)


If a car of mass 1000kg travels up a slope inclined at 5 degrees at a speed of 20 meters per second calculate the power output of the car's engine (assuming a resistive force due to friction of 500N)


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Using z=cos(θ)+isin(θ), find expressions for z^n-1/z^n and z^n+1/z^n


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning