Find all of the roots of unity, Zn, in the case that (Zn)^6=1

Here we use the complex exponential form of 1 which is e^(i 2n pi). Applying the sixth root and substituting in for integer values of n gives all roots in complex exponential form.These can be converted into a complex number of the form a +ib by using e^ix = cosx +isinx

CR
Answered by Callum R. Further Mathematics tutor

2741 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


How do I express complex numbers in the form reiθ?


Find the GS to the following 2nd ODE: d^2y/dx^2 + 3(dy/dx) + 2 = 0


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning