How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?

Finding the solutions to trig equations begins in a very similar way to when we do it at GCSE. We start with:cos(2x) = 2-1/2 0 <= x <=piand correct our range, as we are interested in 2x not just x: 0 <= 2x <= 2pi .Then we find our first solution 2x = cos-1(2-1/2) = pi/4So we have one solution: 2x = pi/4. Our next solution comes from looking at the graph of cos(x), which is symmetrical around the y-axis. From this we can see that 2x = -pi/4 will also be a solution. Then we can add 2pi to each solution until we leave our range. This gives us a set of answers: 2x = pi/4, 7pi/4. We don't need -pi/4 or 9pi/4 because they are not in our range.So x = pi/8, 7pi/8.

TU
Answered by Thomas U. Maths tutor

7608 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


why does log a + log b = log (ab)


Differentiate y = (6x-13)^3 with respect to x


If x=-2,1,2 and the y intercept is y=-8 for y=ax^3+bx^2+cx+d, what is a, b, c and d


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning