let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).

We know that (x+2) divides p(x), therefore p(x) can be written as p(x) = (x+2)q(x) + 0, where q is another polynomial of degree 2. We can calculate then p(-2): p(-2)= ((-2)+2)q(-2) = 0;p(-2)= (-2)^3+b(-2)^2+c(-2) +24=0, equivalent to p(-2)= -8+4b -2c +24=0, p(-2)= 4b-2c+16=0.Simplifying by dividing by 2: 2b-c+8=0.

TS
Answered by Tina-Alina S. Maths tutor

3917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle A rests on a smooth inclined plane, it is connected to a particle B by a light inextensible string that is passed over a fixed smooth pulley at the top of the plane. B hangs freely. Find the acceleration of the system and tension in the string.


What is the equation of the tangent to the curve y=x^3+3x^2+2 when x=2


sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1


Integrate x/(x^2+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning