Solve the simultaneous equations: (1) x^2 + y^2=41 and (2) y=2x-3

First we substitute one x or y into the other equation. The easiest one to put in in this case would be the y in equation (2). So putting the y into (1) you get x^2 + (2x-3)^2=41. Then we expand out the brackets using FOIL: 5x^2-12x-32=0. we then would factorise this by finding two numbers that times to give 160 and add to give -12. these would be -20 and 8. Because we have a 5x^2 this would factorise to give (5x+8)(x-4)=0. The solutions of these would be x=-8/5 and x=4, and then substituting the xs back into one equation (this can be either) to give y=-31/5 and y=5.

Answered by Olivia A. Maths tutor

4174 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you know what to do first when solving composite function?


Find the volume and surface area of a cylinder, of length 20cm and radius 5cm.


For the function given by f(x) = x² - 5x - 6, solve for f(x)=0 by factorising.


In an office there are twice as many females as males. 1/4 of the females wear glasses. 3/8 of the males wear glasses. 84 people in the office wear glasses. Work out the number of people in the office.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences