Solve the simultaneous equations: (1) x^2 + y^2=41 and (2) y=2x-3

First we substitute one x or y into the other equation. The easiest one to put in in this case would be the y in equation (2). So putting the y into (1) you get x^2 + (2x-3)^2=41. Then we expand out the brackets using FOIL: 5x^2-12x-32=0. we then would factorise this by finding two numbers that times to give 160 and add to give -12. these would be -20 and 8. Because we have a 5x^2 this would factorise to give (5x+8)(x-4)=0. The solutions of these would be x=-8/5 and x=4, and then substituting the xs back into one equation (this can be either) to give y=-31/5 and y=5.

Answered by Olivia A. Maths tutor

4454 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

7x + 6 > 1 + 2x


A rectangle has sides of length 4x cm and (x+3)cm and has an area less than 112 cm^2, find the set of values x can take


Paul organised an event for a charity. Each ticket for the event cost £19.95 Paul sold 395 tickets. Paul paid costs of £6000 He gave all money left to the charity. (a) Work out an estimate for the amount of money Paul gave to the charity.


Solve algebraically the simultaneous equations x2 +y2 =25 and y – 3x = 13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences