Solve algebraically the following if there is a solution: x+y=3 2x+y=5 x^2+y=6

First we realize that the question asks IF there is a solutionLet us start with the simplest equations, x+y=3 and 2x+y=5By subtracting the first equation from the second we see x=2 and subbing into x+y=3 we get 2+y=3 and so y=1Now does this 'agree' with our third equation? subbing our values in for x and y into x^2+y=9 we get 2^2+1=5 which means 5=5 which is clearly true. So x=2 and y=1 are the solutions to all three equations.

MS
Answered by Max S. Maths tutor

3134 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the linear equation 12x - 4 = 3x + 2


what is 0.777... as a fraction?


When given an equation with both letters and numbers on each side of the equals sign, for instance 4x +3 = 5x - 3, how do you know what to do first?


6x – 7 = 14 – x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning