Solve algebraically the following if there is a solution: x+y=3 2x+y=5 x^2+y=6

First we realize that the question asks IF there is a solutionLet us start with the simplest equations, x+y=3 and 2x+y=5By subtracting the first equation from the second we see x=2 and subbing into x+y=3 we get 2+y=3 and so y=1Now does this 'agree' with our third equation? subbing our values in for x and y into x^2+y=9 we get 2^2+1=5 which means 5=5 which is clearly true. So x=2 and y=1 are the solutions to all three equations.

Answered by Max S. Maths tutor

2472 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Why do you need simultaneous equations?


Question: Expand (p + 2)(p - 5)


How do you solve a set of three similatenous equations with three unknown variables?


If we know that y is directly proportional to x and that when x=1, y=3, then what is the value of x when y=4?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences