How to determine the modulus of a complex number?

All complex numbers are in the form a+bi where a is the real part of the complex number and b is the imaginary part. Therefore if we are plotting the complex number on argand diagram the value of a tells us where the real part lies (i.e the x value) and the value of b tells us where the imaginary part is (i.e the y value).

The modulus is the distance from the origin to this point, so can be found using pythagorus' theorem. Therefore if z is the modulus z^2=a^2+b^2. We can see this method will work wherever the point is on the argand diagram and so know that sqrt(a^2+b^2) will always give us the modulus of a complex number. 

 

LH
Answered by Luke H. Further Mathematics tutor

8768 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

P(A)=0.2, P(A|B) = 0.3 and P(AuB)=0.6. Find i P(B) ii P(B'|A')


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


Integrate cos(log(x)) dx


I'm struggling with an FP2 First-Order Differential Equations Question (Edexcel June 2009 Q3) and the topic in general!


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences