The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?

Use the chain rule to differentiate the original equation: this results in 8x-3y^2*(dy/dx) + 2ln(3)3^2x=0. This can be rearranged to find dy/dx as a function of y and x: 3y^2(dy/dx)=8x+2ln(3)*3^2x -> dy/dx=(8x+2ln(3)3^2x)/3y^2. At this point, dy/dx at point P can be computed: dy/dx=(80+2ln(3)3^0)/31^2=2ln(3)/3

TD
Answered by Tutor65063 D. Maths tutor

3273 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation: log5 (4x+3)−log5 (x−1)=2.


A curve is defined by the parametric equations x = 2t and y = 4t^2 + t. Find the gradient of the curve when t = 4


Integrate 2sin^3(x)+3.


A block of mass M lies stationary on a rough plane inclined at an angle x to the horizontal. Find a general expression relating the coeffecient of friction between the block and the plane and the angle x. At what angle does the box begin to slide?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning