integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can then use the substitution u = x+2. du=dx to obtain 1/u^2+3^2, our required form. Using a formula booklet, we see that this integrates into 1/3 arctan(u/3). We then substitute for u giving 1/3 arctan(x+2)/3

Answered by Jim T. Maths tutor

8265 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the antiderivative of the function f(x)=(6^x)+1


Prove the identity: (sinx - tanx)(cosx - cotx) = (sinx - 1)(cosx - 1)


find dy/dx at t, where t=2, x=t^3+t and y=t^2+1


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences