Differentiate the following with respect to x: e^(10x) + ln(6x+2)

We can differentiate the terms separately:
The first term e10x can be differentiated using the chain rule.
Let u = 10xWe can differentiate to get du/dx = 10
Differentiating eu with respect to u gives us d/du = eu
the differential of e10x is d/du x du/dx = 10eu
the two du's cancel out and we can replace u with 10x to get:
d/dx = 10e10x
The second term Ln(6x+2) can also be differentiated using the chain rule.
Let v = 6x+2We can differentiate to get dv/dx = 6
Differentiating ln(v) with respect to v gives us 1/v. The differential of ln(6x+2) is (dv/dx) x (d/dv) = 6/v
which gives us d/dx = 6/(6x+2)
The final answer
10e10x + 6/(6x+2)
You can simplify the second fraction by diving by 2 from the top and bottom:
10e10x + 3/(3x+1)

Answered by Meher L. Maths tutor

3390 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Find dy/dx in terms of t for the curve defined by the parametric equations: x = (t-1)^3, y = 3t - 8/t^2, where t≠0


A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences