Use de Moivre's theorem to calculate an expression for sin(5x) in terms of sin(x) only.

de Moivre's theorem gives us that (cos(x) + i sin(x))n = cos(nx) + i sin(nx), for integers n and real values x.Therefore cos(5x) + i sin(5x) = (cos(x) + i sin(x))5 = cos5(x) + 5i cos4(x)sin(x) - 10 cos3(x) sin2(x) - 10i cos2(x)sin3(x) + 5cos(x)sin4(x) + i sin5(x).Taking the imaginary part of both sides, we find sin(5x) = 5cos4(x)sin(x) - 10cos2(x)sin(x) + sin5(x).To remove the cosines, we use the substitution cos2(x) = 1 - sin2(x).This gives us sin(5x) = 5(1 - sin2(x))2sin(x) - 10(1 - sin2(x))sin(x) + sin5(x)Expanding the brackets carefully, we obtain sin(5x) = 5sin(x) - 10sin3(x) + 5sin5(x) - 10sin3(x) + 10sin5(x) + sin5(x).Adding all of the same powers together, we have sin(5x) = 5sin(x) - 20sin3(x) + 16sin5(x), which is our final answer.

Related Further Mathematics A Level answers

All answers ▸

Show that cosh^2(x)-sinh^2(x)=1


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


A rectangular hyperbola has parametric equations x = 4t, y = 4/t , (z non 0). Points P and Q on this hyperbola have parameters t = 1/4 and t = 2. Find the equation of the line l which passes through the origin and is perpendicular to the line PQ.


Express cos5x in terms of increasing powers of cosx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences