what is d(2x^3)/dx?

the differential of a function y=2x^3 is the rate of change of that function. finding the differential is done by following the steps below:1) bring down the power of the x term and multiply it by the term in front of the x:this will give a term of 6 in front of the x in this case as 2x3=62) minus one from the power of the x. this will give a value of 2 in this case3) the overall answer is thus 6x^2

Answered by Charlotte Z. Maths tutor

3427 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0


How do you find the stationary points of the curve with equation y=4x^3-12x+1


If f(x)=(4x^2)-(8x)+3, find the gradient of y=f(x) at the point (0.5,0)


A curve has equation (x+y)^2=x*y^2, find the gradient of the curve at a point where x=1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences