what is d(2x^3)/dx?

the differential of a function y=2x^3 is the rate of change of that function. finding the differential is done by following the steps below:1) bring down the power of the x term and multiply it by the term in front of the x:this will give a term of 6 in front of the x in this case as 2x3=62) minus one from the power of the x. this will give a value of 2 in this case3) the overall answer is thus 6x^2

Answered by Charlotte Z. Maths tutor

3428 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using a suitable substitution, or otherwise, find the integral of [x/((7+2*(x^2))^2)].


Given that the graph f(x) passes through the point (2,3) and that f'(x)=6x^2-14x+3, find f(x).


In a geometric series, the first and fourth terms are 2048 and 256 respectively. Calculate r, the common ratio of the terms. The sum of the first n terms is 4092. Calculate the value of n.


integrate with respect to x the function f(x)= xln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences