what is d(2x^3)/dx?

the differential of a function y=2x^3 is the rate of change of that function. finding the differential is done by following the steps below:1) bring down the power of the x term and multiply it by the term in front of the x:this will give a term of 6 in front of the x in this case as 2x3=62) minus one from the power of the x. this will give a value of 2 in this case3) the overall answer is thus 6x^2

Answered by Charlotte Z. Maths tutor

3468 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why maths is so hard sometimes?


The curve C has the equation ye ^(–2x) = 2x + y^2 . Find dy/dx in terms of x and y.


A new sports car accelerates using rockets at 5m/s for 30 seconds from some traffic lights and then decelerate for 45 seconds to a stop.


A Polynomial is defined as X^3-6X^2+11X-6. a)i Use the factor theorem to show that X-3 is a factor. ii Express as a linear and quadratic b)Find the first and second derivative c) Prove there is a maximum at y=0.385 to 3DP


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences