Find the stationary points of the function f(x) = x^3 - 27x and determine whether they are maxima or minima

A stationary point occurs when the first derivative of the function = 0. The first derivative of f(x) is df(x)/dx = 3x^2 - 27Setting this to zero gives 3x^2 - 27 = 0 -> x = +/- 3
To find whether it is a maxima or minima we find the second derivative d^2 f(x)/dx^2 at 3 and -3d^2 f(x)/dx^2 = 6x d^2 f(x)/dx^2 when x = 3 -> 18As a rule, when the second derivative > 0, the point is a minimumd^2 f(x)/dx^2 when x = -3 -> -18As a rule, when the second derivative < 0, the point is a maximum

Answered by Iman S. Maths tutor

4092 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that (1-cos2x)/sin(2x) = tan(x) where x ≠ nπ/2


How do you find the maximum/minimum value of an equation?


ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences