Find the antiderivative of the function f(x)=cos(2x)+5.

In order to find the antiderivative of the function we're given, we first have to study the general structure of the function. This function consists of a sum between cos(2x) and 5. Therefore, we have : F(x)=∫cos(2x)dx+∫5dx.
We will first focus on ∫cos(2x)dx. Let's solve this by substitution. Let g(x)=2x. We have : ∫cos(g(x))g'(x)dx=∫cos(u)du=sin(u)+C. Hence, ∫cos(2x)*2dx=sin(2x)+C. Thus, ∫cos(2x)=sin(2x)/2+C.
Let's now focus on ∫5dx. This one is fairly easy as we know how to integrate constants: We have ∫5dx = 5x+C.
Therefore, F(x)=(sin(2x)/2)+5x+c

Answered by Tutor149135 D. Maths tutor

4268 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


Solve D/dx (ln ( 1/cos(x) + tan (x) )


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences