A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)

y = 2x cos(3x) + (3x2-4) sin(3x)
dy/dx = (2x x -sin(3x) x 3) + (2 x cos(3x)) + (6x sin(3x)) + ((3x2-4) cos(3x) x 3)
dy/dx = -6x sin(3x) + 2 cos (3x) + 6x sin(3x) + (9x2-12) cos(3x)
dy/dx = (9x2-12 + 2) cos (3x) = (9x2-10) cos (3x)
m = 9n = -10

Answered by Thomas L. Maths tutor

8050 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the gradient of a parametric equation at a certain point?


How do I find the inverse of a function?


(i) Prove sin(θ)/cos(θ) + cos(θ)/sin(θ) = 2cosec(2θ) , (ii) draw draph of y = 2cosec(2θ) for 0<θ< 360°, (iii) solve to 1 d.p. : sin(θ)/cos(θ) + cos(θ)/sin(θ) = 3.


A curve has parametric equations x=2t, y=t^2. Find the Cartesian equation of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences