A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)

y = 2x cos(3x) + (3x2-4) sin(3x)
dy/dx = (2x x -sin(3x) x 3) + (2 x cos(3x)) + (6x sin(3x)) + ((3x2-4) cos(3x) x 3)
dy/dx = -6x sin(3x) + 2 cos (3x) + 6x sin(3x) + (9x2-12) cos(3x)
dy/dx = (9x2-12 + 2) cos (3x) = (9x2-10) cos (3x)
m = 9n = -10

Answered by Thomas L. Maths tutor

7982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain the chain rule of differentiation


2+2 is 4, minus 1, that's what?


How do you differentiate by first principles?


Find the equation of the tangent to the curve y = (2x -3)^3 at the point (1, - 1), giving your answer in the form y = mx + c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences