What is the indefinite integral of ln(x) ?

We can use integration by parts to solve this question. If we look at the formula for Integration by parts: ∫u(dv/dx)dx = uv - ∫ v (du/dx) dx, we see that u must be multiplied by something else so therefore, when we make u = ln(x), we put (dv/dx) = 1 (This is because ln(x)1 is still ln(x)). So in order to get v we integrate 1 with respect to x, and we get x. So, u = ln(x), v = x, (du/dx) = 1/x, (dv/dx) = 1.
And therefore, substituting everything into the formula , we get: ln(x) * x - ∫x
(1/x) dx. It follows through that ∫x*(1/x) dx becomes ∫1 dx which integrates to x. Putting all the parts together gives: xln(x)-x. We must also remember the constant of integration, and so, the final answer becomes: xln(x)-x+C.

DM
Answered by Dawud M. Maths tutor

4757 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


Exponential Growth Equations


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning