What is the indefinite integral of ln(x) ?

We can use integration by parts to solve this question. If we look at the formula for Integration by parts: ∫u(dv/dx)dx = uv - ∫ v (du/dx) dx, we see that u must be multiplied by something else so therefore, when we make u = ln(x), we put (dv/dx) = 1 (This is because ln(x)1 is still ln(x)). So in order to get v we integrate 1 with respect to x, and we get x. So, u = ln(x), v = x, (du/dx) = 1/x, (dv/dx) = 1.
And therefore, substituting everything into the formula , we get: ln(x) * x - ∫x
(1/x) dx. It follows through that ∫x*(1/x) dx becomes ∫1 dx which integrates to x. Putting all the parts together gives: xln(x)-x. We must also remember the constant of integration, and so, the final answer becomes: xln(x)-x+C.

Answered by Dawud M. Maths tutor

3799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove the following identity: (1+cos⁡(x)+cos⁡(2x))/(sin⁡(x)+sin⁡(2x) )=cot⁡(x)


How do I differentiate a function of x and y with respect to x?


Find the gradient of the tangent and the normal to the curve f(x)= 4x^3 - 7x - 10 at the point (2, 8)


Pushing a mass up a slope and energy


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences