Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t

First find an auxiliary equation, for the complimentary function:m^2 + 2m - 3 = 0, (m+3)(m-1)=0m=1 or m=-3So the complimentary function is: x= Ae^t + Be^-3tFor the particular integral (PI), let x = Ue^-tthen x' = -Ue^-tand x'' = Ue^-tBy substituting these in : U(e^-t) - 2U(e^-t) -3U(e^-t) = 2e^-tDividing by e^-t, -4U=2, U=-0.5So the PI is: x= 0.5e^-tAnd, finally, the general solution is: x= Ae^t +Be^-3t +0.5e^-t

IF
Answered by Isaac F. Further Mathematics tutor

2353 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


How do you find the matrix corresponding to a transformation?


how do I do proofs by induction?


Give the general solution to y'' - 3y' + 2y = 4x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning