Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.

First take the 3 over the other side to make the right hand side zero, turning it into a homogeneous equation: 3a2+4a-2=0. Since the expression on the left hand side cannot be factorised, we have to use quadratic formula. Applying the quadratic formula gives the following solutions for a: a1= (-4 + sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 + sqrt(40) / 6 = 0.3874... and a2= (-4 - sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 - sqrt(40) / 6 = -1.7207... . Hence, final solutions are a = 0.387 and a = -1.72.

Answered by Nida A. Maths tutor

3114 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify 2^11 x 8


Factorise fully 2x^2 -x -4=2 and thus solve for x


Simplify fully (3x^2-8x-3)/(2x^2-6x)


Solve ((3x-2)/4) - ((2x+5)/3) = ((1-x)/6)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences