Differentiate with respect to x: y = xln[2x]

This is an example of a question where we would have to use the product rule for differentiation, because we have two functions multiplied together ( x and ln(2x) ).If we have: y = uv, where u and v are functions of x then the product rule tells us that dy/dx = uv' + vu'. So, if u = x and v = ln[2x] then u' = 1 and v' = 1/x . Remember that the differential of ln(f(x)) = f'(x) / f(x)Then, applying the product rule, we have that dy/dx = (x) (1/x) + (ln(2x)) (1) = 1 + ln(2x) Our final answer is: 1 + ln(2x)

MA
Answered by Muhammed Ali M. Maths tutor

5670 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality x^2 – 5x – 14 > 0.


Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning