The volume, V, of water in a tank at time t seconds is given by V = 1/3*t^6 - 2*t^4 + 3*t^2, for t=>0. (i) Find dV/dt

The differential of a function is is rate of range of that function. Therefore to find dV/dt, we are finding the rate of change of the volume per unit time.Recall, in order to differentiate a term, e.g. xa1) First multilply the term by the power, axa2) Then reduce the power by one, to a-1, axa-1d/dx(xa) = axa-1 <--- summary of processNow we just need to apply this rule individually to each of our terms.First term therefore becomes:1/3t6 --> 6/3t6 --> 2t5Eventually you will get the answer by following this with the other terms:dV/dt = 2t5 - 8t3 + 6t

SW
Answered by Samuel W. Maths tutor

6789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


Given that y=(4x^2)lnx, find f"(x) when x=e^2


The quadratic equation x^2 + 4kx+2(k+1) = 0 has equal roots, find the possible values of k.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences