Using substitution, integrate x(2 + x))^1/2 where u^2 = 2 + x

u2 = 2 + xx = u2 - 2dx/du = 2u
ʃ x(2 + x))1/2 dx= ʃ xu dx= ʃ u(u2 - 2) dx= ʃ 2u2 (u2 - 2) du= ʃ 2u4 - 4u2 du= [2/5u5 - 4/3u3 + C]= 2/5 (2 + x)5/2 - 4/3 (2 + x)3/2 + C

Answered by Sonali P. Maths tutor

3703 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you simplify something of the form Acos(x) + Bsin(x) ?


Given that y = x^2 +2x + 3, find dy/dx.


Given that x = cot y, show that dy/dx = -1/(1+x^2)


Given that f(x)= (4/x) - 3x + 2 find i) f'(x) and ii) f''(1/2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences