a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .

The first part of the question is actually a "show that" the equation in the question can be rearranged to the form 10 cot^(x) + 11 cot(x) - 6 = 0. To do this add 11 cot (x) and subtract 16 to/from both sides of the equation in the question. This gives 10 cosec^2(x) + 11 cot(x) - 16 = 0 which can be written as 10 (cosec^2(x) - 1) + 11 cot(x) - 6 = 0. By substituting in the identity cot^2(x) = cosec^2(x) - 1 you get the required form. If you can remember this identity it can be derived from sin^2(x) + cos^2(x) = 1 as dividing by sin^2(x) gives 1 + cot^2(x) = cosec^2(x).Now for the next part you need to factorise this quadratic equation in the variable cot(x). To do this we want to write the equation in the form (A cot(x) + B)(C cot(x) + D) = 0, where A,B,C,D are numbers. A and C must multiple together to make 10, and B and D similarly to make -6. Also note one of B or D must be negative. Options for A and C are 10 and 1 or 2 and 5. For B and C they are ±6 and ±1 or ±2 and ±3. By considering the other condition that AD + BC = 11 the factorisation must be (5 cot(x) - 2)(2cot(x) + 3) = 0. Then consider when both factors are equal to 0 separately. 5 cot (x) -2 = 0 implies that 5 - 2 tan x) = 0 therefore tan(x) = 5/2. Similarly tan(x) = -2/3.

Answered by Hebe W. Maths tutor

4567 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Event A: a customer asks for help. Event B a customer makes a purchase. We know: p(B) = 0.2 and p(A) knowing that he has asked for help is 75%. What is the probability of a customer to ask for help and make a purchase?


How do you show some quadratic polynomials are always greater than 0?


Why do the trig addition formulae work?


Use integration by parts to find the integral of xsinx, with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences