Ayo is 7 years older than Hugo. Mel is twice as old as Ayo. The sum of their three ages is 77 Find the ratio of Hugo's age to Ayo's age to Mel's age.

  1. Hugo = x Ayo = x + 7 (as he is 7 years old than Hugo's age) Mel = 2 multiplied by (x +7) as she is twice as old as Ayo2) If their ages combined equals 77, you add up all the algebraic equations and set it equal to 77 as so; x + (x+7) + 2(x+7)=77.3) You now collect all the like terms e.g. 4x + 21=77 and then solve for x e.g. x= (77-21)/4=144) Then substitute this number back into the original equations and get the ages: Hugo = 14, Ayo = 21 and Mel = 425) Finally, set these out as a ratios - 14: 21: 42 and divide by 7 as they are all multiples of 7 and get the ratio as 2: 3: 6.
Answered by Jeenali S. Maths tutor

4735 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 7x + 6 > 1 + 2x


A family go into a shop, they buy three sandwiches and two packets of crisps. It costs them £9. Another family buy five sandwiches and six packets of crisps. It costs them £19. How much does two sandwiches and five packets of crisps cost?


How do I solve a quadratic equation by competing the square?


Prove that the difference of any two consecutive square numbers is odd


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences