Ayo is 7 years older than Hugo. Mel is twice as old as Ayo. The sum of their three ages is 77 Find the ratio of Hugo's age to Ayo's age to Mel's age.

  1. Hugo = x Ayo = x + 7 (as he is 7 years old than Hugo's age) Mel = 2 multiplied by (x +7) as she is twice as old as Ayo2) If their ages combined equals 77, you add up all the algebraic equations and set it equal to 77 as so; x + (x+7) + 2(x+7)=77.3) You now collect all the like terms e.g. 4x + 21=77 and then solve for x e.g. x= (77-21)/4=144) Then substitute this number back into the original equations and get the ages: Hugo = 14, Ayo = 21 and Mel = 425) Finally, set these out as a ratios - 14: 21: 42 and divide by 7 as they are all multiples of 7 and get the ratio as 2: 3: 6.
JS
Answered by Jeenali S. Maths tutor

5227 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The population of sheep on an island is 170. The population of the sheep is expected to increase by 3% each year, what will the population of sheep be in 5 years time? [3 marks]


3 teas and 2 coffees have a total cost of £7.80 5 teas and 4 coffees have a total cost of £14.20 Work out the cost of one tea and the cost of one coffee.


The perimeter of a right-angled triangle is 72 cm. The lengths of its sides are in the ratio 3 : 4 : 5 Work out the area of the triangle.


Solve the simultaneous equations. 2x + y =10 and x + y = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences