Given that the binomial expansion of (1 + kx) ^ n is 1 - 6x + 30x^2 + ..., find the values of n and k.

Setting (1 + kx)n equal to 1 - 6x + 30x2 + ..., the binomial expansion can be applied to the LHS, by making use of the formula provided in the formula book. In this case, where x appears in the formula book expression, we must replace it by kx. This yields:1 + n(kx) + n(n-1)(kx)/2! + ... = 1 - 6x + 30x2 + ...Since LHS = RHS, we can equate the coefficients of x and x2 to give two equations in n and k:x: nk = -6x2: n(n-1)k/2 = 30This pair of simultaneous equations are most easily solved by noting the term nk appears in the second equation, and can be substituted for the value -6 as given by the first equation. This gives a linear equation in terms of n, which can be solved to give n = -9. Noting the question asks for a value of k as well, we substitute n = -9 into the first equation to give k = -2/3.

SG
Answered by Sanchit G. Maths tutor

14327 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between definite and indefinite integrals?


The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)


Solve the simultaneous equations y = x^2 - 6x and 2y + x - 6 = 0


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning