Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.

  1. Factorising denominator of fraction:x^2 + 10x + 21 = (x+3)(x+7)2) Partial fractions:f(x) = 12/(x+3)(x+7);  let f(x) = A/(x+3) + B/(x+7)then equating the nominator: A(x+7) + B(x+3) = 12From this we can set up simultaneous equations: (1): Ax + Bx = 0; (2): 7A + 3B = 12From (1): A = -BSubstituting A into (2): 7(-B) + 3B =12So B=-3, and A=3f(x) = 3/(x+3) – 3/(x+7)3) Integrating the function:∫ f(x) dx = 3 ∫ (1/(x+3) - 1/(x+7)) dx = 3ln|x+3| - 3ln|x+7| + c4) Evaluating the integral with limits [-1,1]:3ln|1+3| - 3ln|1+7| - 3ln|-1+3| + 3ln|-1+7| = 3ln(3/2) = ln(27/8) = 1.22 (2d.p.)

Related Further Mathematics GCSE answers

All answers ▸

(x+4)((x^2) - kx - 5) is expanded and simplified. The coefficient of the x^2 term twice the coefficient of the x term. Work out the value of k.


Expand (2x+3)^4


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


Solve x^(-1/4) = 0.2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences