A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.

A stationary point can be found when dy/dx = 0. The first thing we need to do is differentiate y to find dy/dx, and solve it for dy/dx = 0. This gives usdy/dx = 3x2 - 12x - 15 = 0 = (3x + 3)(x - 5) = 0 (using quadratic formula)Therefore x = -1 and x = 5.The question already gives us x = -1, so the answer is x = 5.

Answered by Ellie G. Maths tutor

7165 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C4 June 2014 Q4: Water is flowing into a vase. When the depth of water is h cm, the volume of water V cm^3 is given by V=4πh(h+4). Water flows into the vase at a constant rate of 80π cm^3/s. Find the rate of change of the depth of water in cm/s, when h=6.


What are the necessary conditions for a random variable to have a binomial distribution?


Express the polynomial x^3+x^2-14x-24 as a product of three linear factors.


A curve has equation y = 20x -x^(2) - 2x^(3). The curve has a stationary point at the point M where x = −2. Find the x coordinates of the other stationary point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences