Find the equation of the tangent to the curve x^3+yx^2=1 at the point (1,0).

We can find the gradient of a tangent to a curve at a point by finding dy/dx at x=1.Firstly we can rearrange the equation of the curve for y.(1) yx^2=1-x^3(2)y=x^{-2}-xThen we can differentiate the equation w.r.t x to find dy/dxdy/dx=-2x^{-3}-1At x=1 dy/dx=-2-1=-3To find the equation of a tangent at a point we can use y-y_{1}=m(x-x_{1})Inputting the values into this equation gives(1) y-0=-3(x-1)(2) y=-3x+3Which is the equation of the tangent to the curve at the point (1,0) so we're done.

Answered by Ollie G. Maths tutor

2826 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate F(x)=(25+v)/v


Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


The equation x^3 - 3*x + 1 = 0 has three real roots; Show that one of the roots lies between −2 and −1


What is product rule differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences