The gradient of a curve is given by dy/dx = 3 - x^2. The curve passes through the point (6,1). Find the equation of the curve.

Since we differentiate a function to find the gradient of a curve at any point, we need to reverse that to find the equation of the curve. We do this by integrating with respect to x:If you have a constant (a number without x), it becomes (constant)x. In this case, 3 becomes 3xThen, if you do have an x, you add one to the power and divide by the new power. So, here, -x^2 will become (-x^3)/3If you're given a point and told to find the equation of the curve, you have to find the constant, c. This is because when you a constant, it becomes zero. To do this, you substitute the coordinates into your integrated form: y = 3x - (x^3)/3 + c. This leads to 1 = 3(6) - (6^3)/3 + c. Solve for c and you'll get 55.So the equation of the curve is y = 3x - (x^3)/3 + 55.Never forget +c!!

DN
Answered by Darya N. Maths tutor

10051 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that the equation y = 3x^4 - 8x^3 - 3 has a turning point at x=2


Solve e^(2x) = 5e^(x) - 6, giving your answers in exact form


A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


Three forces, (15i + j) N, (5qi – pj) N and (–3pi – qj) N, where p and q are constants, act on a particle. Given that the particle is in equilibrium, find the value of p and the value of q. (Mechanics 1 June 2017)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning