integral of xe^-x dx

Using integration by parts by letting u=x and dv/dx=e^-x. this implies that du/dx=1 and v=-e^-xThe By Parts formulae is u.v - integral(v.du/dx) = -xe^-x - integral(-e^-x).1 dx = -xe^-x + integral(e^-x) dx = -xe^-x -e^-x +c (where c is the constant of integration.)

BK
Answered by Brandon K. Maths tutor

6283 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.


Explain the basics of projectile motion


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


What methods are there for integration?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning