The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.

To find dy/dx, the differential, of any function... you must times the coefficient of each variable of x by its power, then reduce the power by one. Using this information we can work out that 3x^4 turns to 12x^3, and -8x^3 turns to -24x^2. Since -3 doesn't appear to be a coefficient of x, we must imagine it to be -3x^0. Therefore when you multiple the coefficient, 3, by 0, this part of the equation turns to zero.
Therefore if curve C has equation y = 3x^4 – 8x^3 – 3. We know that dy/dx = 12x^3 - 24x^2 (+0).

JC
Answered by Joseph C. Maths tutor

4723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫6e^(2x+1) dx, find integral


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


How do I differentiate (2x+1) / (3x^2 - 5)?


Find the constant term in the expression (x^2-1/x)^9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning