The curve C has equation y = 3x^4 – 8x^3 – 3. Find dy/dx.

To find dy/dx, the differential, of any function... you must times the coefficient of each variable of x by its power, then reduce the power by one. Using this information we can work out that 3x^4 turns to 12x^3, and -8x^3 turns to -24x^2. Since -3 doesn't appear to be a coefficient of x, we must imagine it to be -3x^0. Therefore when you multiple the coefficient, 3, by 0, this part of the equation turns to zero.
Therefore if curve C has equation y = 3x^4 – 8x^3 – 3. We know that dy/dx = 12x^3 - 24x^2 (+0).

Answered by Joseph C. Maths tutor

4006 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

With log base 4, solve log(2x+3) + log(2x+15) = 1 + log(14x+5)


Express cos2x in the form a*cos^2(x) + b and hence show that the integral of cos^2(x) between 0 and pi/2 is equal to pi/a.


Differentiate y=(4x^2-1)^3


Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences