f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0

firstly, x2 + 4 = 0 x2 = -4 x = 2i x = -2iSecondly, x2 + 8x + 25 = 0 using the quadratic formulae: x = (-b +- sqrt(b2 - 4ac))/2a x = (-8+-sqrt(64-100))/2 x = -8/2 +- sqrt(-36)/2 x = -4 + 3i x = -4 - 3i

Answered by Laura S. Maths tutor

4612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If the quadratic equation kx^2+kx+1=0 has no real roots, what values of k are possible?


Prove that 1 + tan^2 x = sec^2 x


Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences