Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.

(7+ √5)/(3+√5)Here, the denominator is not rational - (numbers like 2 and 3 are rational). A number with an irrational denominator isn't incorrect, it just isn't in the simplest form it can be in.To rationalise the denominator in this case, we want to use the denominator's conjugate (e.g. Conjugate of 2-√3, would be 2+√3)We do this because it helps remove the surd from the denominator.(7+ √5)/(3+√5) * (3-√5) /(3-√5) (Note that the second part - (3-√5) /(3-√5) - we use this because anything divided by itself equals 1. Multiplying anything by 1 doesn't change it's value)Multiplying fractions (toptop and bottombottom): (7+ √5)(3-√5)/(3+√5)(3-√5) Use FOIL to multiply out brackets and simplify---> 4-√5So, a=4 and b=-1

Related Further Mathematics GCSE answers

All answers ▸

Find and describe the stationary points of the curve y = x^2 + 2x - 8


Using differentiation, show that f(x) = 2x^3 - 12x^2 + 25x - 11 is an increasing function.


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences