Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.

(7+ √5)/(3+√5)Here, the denominator is not rational - (numbers like 2 and 3 are rational). A number with an irrational denominator isn't incorrect, it just isn't in the simplest form it can be in.To rationalise the denominator in this case, we want to use the denominator's conjugate (e.g. Conjugate of 2-√3, would be 2+√3)We do this because it helps remove the surd from the denominator.(7+ √5)/(3+√5) * (3-√5) /(3-√5) (Note that the second part - (3-√5) /(3-√5) - we use this because anything divided by itself equals 1. Multiplying anything by 1 doesn't change it's value)Multiplying fractions (toptop and bottombottom): (7+ √5)(3-√5)/(3+√5)(3-√5) Use FOIL to multiply out brackets and simplify---> 4-√5So, a=4 and b=-1

OG
Answered by Oscar G. Further Mathematics tutor

18332 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Solve the following simultanious equations: zy=28 and 2z-3y=13


How can you divide an algebraic expression by another algebraic expression?


Why does tanx = sinx/cosx ?


find the stationary point of the curve for the equation y=x^2 + 3x + 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning