The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y

16y3 + 9x2y - 54x= 0 
a) Differentiate the terms separately dy/dx(16y3 + 9x2y - 54x) = dy/dx(16y3) + dy/dx(9x2y) - dy/dx(54x) = 48y2(dy/dx) + 18xy + 9x2(dy/dx) - 54 Implicit differentiation, treating y as a function of xdy/dx = (54 - 18xy)/(48y2+ 9x2) Factor out dy/dx and then cross multiply





Answered by Joseph G. Maths tutor

3614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are complex numbers?


The polynomial p(x) is given by p(x) = x^3 – 5x^2 – 8x + 48 (a) (i) Use the Factor Theorem to show that x + 3 is a factor of p(x). [2 marks] (ii) Express p(x) as a product of three linear factors. [3 marks]


Is there an easy way to remember all the basic graphical transformations?


What are the necessary conditions for a random variable to have a binomial distribution?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences