The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y

16y3 + 9x2y - 54x= 0 
a) Differentiate the terms separately dy/dx(16y3 + 9x2y - 54x) = dy/dx(16y3) + dy/dx(9x2y) - dy/dx(54x) = 48y2(dy/dx) + 18xy + 9x2(dy/dx) - 54 Implicit differentiation, treating y as a function of xdy/dx = (54 - 18xy)/(48y2+ 9x2) Factor out dy/dx and then cross multiply





Answered by Joseph G. Maths tutor

3735 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the coefficient of x^2 in the expansion of (5+2x)^0.5?


What is an Inverse function?


The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


How do you find the angle between two lines in three dimensional vector space given two points on line 1 and the vector equation of line 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences