The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y

16y3 + 9x2y - 54x= 0 
a) Differentiate the terms separately dy/dx(16y3 + 9x2y - 54x) = dy/dx(16y3) + dy/dx(9x2y) - dy/dx(54x) = 48y2(dy/dx) + 18xy + 9x2(dy/dx) - 54 Implicit differentiation, treating y as a function of xdy/dx = (54 - 18xy)/(48y2+ 9x2) Factor out dy/dx and then cross multiply





JG
Answered by Joseph G. Maths tutor

4555 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function x(2x+5)^0.5


Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


Differentiate the following: y=sin(x^2+2)


How can you integrate the function (5x - 1)/(x^(3)-x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning