Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.

We are looking for a straight line, so it needs the form y=mx+c. To find our gradient, m, we need the gradient of the curve at the point x=-2, so differentiate the equation: dy/dx=6x2+6x-4, and solve at x=-2, ie m=64-62-4=8.To find c, calculate the y coordinate at x=-2 using the equation of the curve: y=2*(-8)+34-4(-2)+7=11. Using the values we have for y, m and x, we can calculate what value c should be: y=mx+c, so c=y-mx=11-8*(-2)=27.Thus the equation for the tangent line at x=-2 is y=8x+27.

JB
Answered by James B. Maths tutor

5780 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For y = 7x - x^3, find the two stationary points and what type of stationary points they are.


The polynomial p(x) is given by p(x)=x^3 - 5x^2 - 8x + 48. Given (x+3) is a factor of p(x), express p(x) as a product of 3 linear factors.


Sine Rule


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences