Solve the inequality x^2 + 5x -24 ≥ 0.

There are a few different ways to approach this problem but the simplest and most easy to visualise solution comes from sketching the curve y = x2 + 5x - 24 and identifying the range of x-values for which y ≥ 0. The first step is to factorise the equation to find the points where the curve crosses the x-axis and moves from being greater than 0 to less than 0 or vice versa. In this example you need to find two numbers that add to make 5 and multiply to make -24, namely -3 and 8. The equation can then be written as y = (x + 8)(x - 3) and the points where the curve crosses the x axis are x = -8 and x = 3. Since the x2 term is positive, we know that this graph has a minimum rather than a maximum and so the regions where y ≥ 0 lie before it crosses the x-axis for the first time and after it crosses it for the second time. The solution is therefore: x ≥ 3 and x ≤ -8.

Answered by Owen W. Maths tutor

6665 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Work out the percentage increase from 30 to 420.


3x + 4y + 7z = 12. x=2 and y=-1, what is the value of z to 2 dp?


The diagram shows a prism. The cross-section of the prism is an isosceles triangle. The lengths of the sides of the triangle are 13 cm, 13 cm and 10 cm. The perpendicular height of the triangle is 12 cm. The length of the prism is 8 cm. Work out the total


Solve the simultaneous equations y = 2x-3 and x^2 +y^2 = 2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences