When do you use integration by parts?

The formula for integration by parts is Integral(udv/dx)dx = uv - Integral(vdu/dx)dx
You use integration by parts when you have an integral where you have to terms multiplied together ie Integral(u*dv/dx)dx eg Integral(5xex)dx.From here you need to identify what term is u and what term is dv/dx from our example integral.
A good way to do this is to use the abbreviation u = LATE, where we select our u variable in the order of what our term is. Ie u = logarithm, algebraic term, trigonometric term, exponential term. In our example, u = 5x, and we therefore select dv/dx = ex.Now, we differentiate y and integrate dv/dx in order to use the formula ie du/dx = 5 and v = ex.We now substitute in our values:5xex - Integral(5ex)dx = 5xex -5ex In this question we have indefinite limits ie we never specified them. If we had limits a and b then we would integrate this over a and b.

AB
Answered by Alex B. Maths tutor

4818 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 8/((root3) -1)) in the form a(root3) +b, where a and b are integers.


Express (3 + 13x - 6x^2)/(2x-3) in the form Ax + B + C/(2x - 3)


The function f is defined by f(x)= 2/(x-3) + x - 6 . Determine the coordinates of the points where the graph of f intersects the coordinate axes.


the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning