Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5

We know that x²+kx-3k-5<0 for some x for the values the k that we are trying to find.This will only occur when the curve has two distinct intersections with the x-axis. There are two distinct intersections only when the discriminant of the quadratic equation is more than 0. So k²-4(1)(-3k-5)>0 which is simplified as k²+12k+20>0.To find the values of k which satisfy this we solve k²+12k+20=0 by factorising and getting (k+10)(k+2)=0 so k=-10 or k=-2.Using these intersections with the x-axis we can sketch the graph of this quadratic and see that it is greater than 0 when k<-10 or k>-2. Therefore the solution to the question is k<-10 or k>-2.

Answered by Peter S. Maths tutor

3448 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve x^2=4(x-3)^2


Express 6cos(2x) + sin(x) in terms of sin(x), hence solve the equation 6cos(2x) + sin(x) = 0 for 0<x<360


Given a function f(x)=3x^2+5x-1, find its derivative.


differentiate y=(4x^3)-5/x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences