Let f(x) = x^2 - 1. A vertical translation of 3 and a horizontal translation of -2 is applied. Write the new function g(x) in the form g(x) = ax^2 + bx + c

Let f(x) = x2- 1To apply a vertical translation, simply add the value to the overall equation. In this case it is positive and thus moves the graph up 3 units:f(x) = x2- 1 + 3 = x2+ 2To apply a horizontal translation, recall the form g(x) = (x-a)2+b; a denotes the horizontal translation, and in this case:g(x) = (x+2)2+ 2 [this translates the graph 2 units to the left]Finally, convert to the form ax2+ bx + c. This can be done by expanding the equation above:g(x) = (x+2)2+ 2= (x+2)(x+2) + 2= x2+ 4x + 4 + 2= x2+ 4x + 6 [ANSWER]

Answered by Jack H. Maths tutor

2100 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If the hypotenuse of a triangle is 7cm and another side is 4cm, what's the length of the other side? How can I work this out?


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel


The diameter of a circle is 14cm, work out its area


Solve the equation 6x^2 + 17x - 39 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences