Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]

Firstly, we need to differentiate the function of the curve y = x^3 + 2x^2 - 5. Using d/dx (x^n) = nx^(n - 1), we get dy/dx = 3x^2 + 4x. To find the gradient of this curve, we then need to evaluate dy/dx at x = -2 -> dy/dx = 3(-2)^2 + 4(-2) = 4. Since we know that a normal is perpendicular to the curve, the gradient of the normal is -1/gradient of the curve -> gradient of normal = -1/4. We then need to find the y coordinate of the point where x = -2. We do this by substituting x = -2 into y = x^3 + 2x^2 - 5 -> y = (-2)^3 + 2(-2)^2 - 5 = -5. Next, we use the equation y - y1 = m(x - x1) with m = -1/4 and (x1, y1) = (-2, -5). This gives us y - - 5 = -1/4(x - - 2) -> y + 5 = (-1/4)x - 1/2 -> y = (-1/4)x - 11/2. Therefore, the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2 is y = (-1/4)x - 11/2.

Answered by Amy G. Maths tutor

3546 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do we work out the asymptotes of the graph y=1/x -5


A particle of mass 0.5 kg is moving down a rough slope (with coefficient of friction = 0.2) inclined at 30 degrees to the horizontal. Find the acceleration of the particle. Use g = 9.8 ms^-2.


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


Common mistakes made in A-Level exams


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences