By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)

In this case the question has given you a clue as to the order that you solve the question. So, first we need to expand the brackets, multiplying each term by one another to get; y=8x^6 - 36x^4 + 6x^3 - 27x.
We then need to differentiate the equation we have found by multiplying each coefficient of x by the power of each x term, so 6x^2 and then subtracting 1 from each power of x. For example 6x^3 would become 18x^2 (6 x 3 =18, 3 - 1=2)
We then reach the final answer of dy/dx= 48x^5 - 144x^3 + 18x^2 - 27

Answered by Patrick A. Maths tutor

2849 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that n is a prime number greater than 5 then n^4 has final digit 1


Integrating (e^x)sin(x)


How do you differentiate y=ln(x)


A curve has equation y = x^3 - 48x. The point A on the curve has x coordinate -4. The point B on the curve has x coordinate - 4 + h. Show that that the gradient of the line AB is h^2 - 12h.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences