By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)

In this case the question has given you a clue as to the order that you solve the question. So, first we need to expand the brackets, multiplying each term by one another to get; y=8x^6 - 36x^4 + 6x^3 - 27x.
We then need to differentiate the equation we have found by multiplying each coefficient of x by the power of each x term, so 6x^2 and then subtracting 1 from each power of x. For example 6x^3 would become 18x^2 (6 x 3 =18, 3 - 1=2)
We then reach the final answer of dy/dx= 48x^5 - 144x^3 + 18x^2 - 27

Answered by Patrick A. Maths tutor

2972 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Question 3 on the OCR MEI C3 June 2015 paper. Find the exact value of Integral x^3 ln x dx between 1 and 2.


Simplify √32+√18 to a*√2 where a is an integer


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences