Find dy/dx when y = (3x-1)^10

  1. First the power will be taken into account: multiply by 10 and take one away from the power:
    y = 10(3x-1)^9
    2) Then we will differentiate what is in the brackets and multiply it by step 1:
    y = (3x-1)dy/dx = 3
    10(3x-1)^9 multiplied by 3
    Therefore the answer is:
    30(3x-1)^9
SR
Answered by Sakina R. Maths tutor

3389 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What's the difference between the quotient rule and the product rule?


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


How do you integrate the equation x^2 + 4x + 3 dx? (


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning